

RESEARCH REPORT

Executive Summary:

Smart Cities

Smart Technologies and Infrastructure for Energy, Water, Mobility, Buildings, and Government: Global Market Analysis and Forecasts

NOTE: This document is a free excerpt of a larger report. If you are interested in purchasing the full report, please contact Navigant Research at research-sales@navigant.com.

Published 2Q 2016

Ryan Citron

Research Analyst

Eric Woods

Research Director

Section 1

EXECUTIVE SUMMARY

1.1 A Critical Phase for Smart Cities

The momentum behind the development of smart cities continues unabated. City leaders around the world are committing to smart city objectives as they attempt to shape the development of their cities to meet social, economic, and environmental challenges. National governments are also encouraging cities to become centers of innovation and drivers of sustainable growth.

As a market, though, the smart city is at a critical point. There are many grand visions for the development of smart cities and even more pilots and demonstration programs. However, there are far fewer large-scale, financially sound deployments of smart solutions to solve core city problems. Today, city leaders and suppliers are recognizing that there needs to be a clearer and faster route to the broader deployment of proven technologies and solutions. The question is how to establish the right business models and the right deployment strategies to enable this expansion.

Other smart city trends include a growing emphasis on resilience and climate adaption in city strategies and a new focus on making smart city development relevant to citizens and their daily lives. Still other trends include a desire for more data-driven policymaking and real-time operational control and a recognition of the need for standards to help drive smart city programs to the next stage.

Navigant Research expects the rate of adoption of smart city solutions to accelerate over the next 2 years. The broader spread of Internet of Things (IoT) technologies will provide further momentum for these developments, as will the development of more sophisticated understanding of city requirements on both the demand and the supply side.

1.2 Definition and Key Trends

Navigant Research defines a smart city as the integration of technology into a strategic approach to sustainability, citizen well-being, and economic development. The concept of the smart city covers a wide range of communities and governance models—spanning from megacity regions to small towns and from historic urban centers to greenfield developments. Similarly, an incredible diversity of customers, suppliers, technologies, and requirements falls under the smart city label. For these reasons, the smart city should be seen as a complex confluence of several existing markets, as well as the driver for new, emergent solutions that span existing industries, operations, and services.

1.2.1 The Emergence of New Business Models

In the age of restricted government budgets, innovative business models are needed to finance the large infrastructure requirements that are often inherent in smart city projects. Funding mechanisms such as public-private partnerships (PPPs), energy-saving performance contracts (ESPCs), and build-operate-transfer (BOT) agreements are some of the most common forms of business models being utilized to expand smart city development.

1.2.2 More National Programs

National and regional involvement in the smart city market has been increasing in recent years, lending support to city efforts. Australia is the most recent country to launch a national program, joining a list that includes China, India, Japan, Singapore, South Korea, and the United Kingdom. In the United States, smart city developments have been given a lift through the Obama administration's Smart City Initiative and the U.S. Department of Transportation's (DOT's) Smart City Challenge.

1.2.3 Acceleration of the Energy Transition

Aggressive city energy policy and climate action programs are serving as the foundation for energy efficiency and clean energy projects. An increasing number of cities have defined ambitious targets for improving sustainability and reducing greenhouse gas (GHG) emissions and energy consumption. These climate action plans are serving as a basis for sustainable development in major cities around the world.

1.2.4 Emerging Models for Mobility on Demand

Multi-modal programs and applications that allow city residents to plan trips using a variety of transport options have been a major focus of smart city mobility strategies. Leading cities are now exploring how that model can evolve to take advantage of mobility ondemand services that combine transit services, carsharing, ridesharing, and other ondemand services such as bike-sharing. The emerging vision is of integrated information and payment services that enable higher levels of convenience for consumers while also supporting the drive to low carbon urban transportation.

1.2.5 From Point Solutions to Multi-Application Networks

There is a growing awareness among city leaders of the potential benefits of integrated, multi-application approaches to the deployment of smart city infrastructure. However, the majority of procurement is still being structured around the siloed requirements of individual departments. Front-line managers and procurement teams need to have a better understanding of the benefits of more coordinated and integrated approaches to the use of smart solutions. To achieve this, smart city projects have to shift their focus from technical feasibility to the demonstration of measurable outcomes and robust business cases.

1.3 The Market Opportunity

Navigant Research expects the global market for smart city solutions and services to be worth \$36.8 billion in 2016. Smart city market revenue is projected to grow to \$88.7 billion by 2025, representing a compound annual growth rate (CAGR) of 10.3%. On a cumulative basis, the market is anticipated to be worth \$606.4 billion between 2016 and 2025.

Currently, Europe is estimated to be the largest regional market in terms of annual smart city revenue, though Asia Pacific is anticipated to become the world leader by 2019. The vast expansion in the Asia Pacific urban population and growing demands for better quality services and infrastructure are expected to drive demand for smart city technologies in the region. North American cities are currently playing a leading role in the sectors of smart water, smart buildings, and smart government. Additionally, many cities in the region are implementing strong climate action plans in order to mitigate and adapt to the effects of global climate change.

\$100,000 ■ North America \$90,000 Europe \$80,000 Asia Pacific ■ Latin America \$70,000 (\$ Millions) Middle East & Africa \$60,000 \$50,000 \$40,000 \$30.000 \$20,000 \$10,000 \$-2016 2017 2018 2019 2020 2021 2022 2023 2024 2025

Chart 1.1 Annual Smart City Revenue by Region, World Markets: 2016-2025

(Source: Navigant Research)

In terms of key infrastructure and service areas, smart energy is expected to remain the largest of the five sectors over the forecast period. Smart water will be the fastest-growing sector over the forecast period as the water industry invests in its digital infrastructure to improve water management in the world's cities. Cities are also looking at the innovative use of technology to address their mobility challenges and improve building efficiency. Investment in smart solutions for city services such as lighting, waste, and social care is also expected to accelerate during the forecast period.

Section 8

TABLE OF CONTENTS

Section	ı 1 .		. 1
Executi	ve Sı	ummary	.1
1.1	A C	Critical Phase for Smart Cities	. 1
1.2	Def	finition and Key Trends	. 1
1.2	:.1	The Emergence of New Business Models	. 2
1.2	.2	More National Programs	. 2
1.2	3	Acceleration of the Energy Transition	. 2
1.2	.4	Emerging Models for Mobility on Demand	. 2
1.2	5	From Point Solutions to Multi-Application Networks	. 2
1.3	The	e Market Opportunity	. 3
Section	2		. 4
Market	Issue	9\$. 4
2.1	Sm	art Cities: Growth and Evolution of the Market	. 4
2.2	The	e Smart City: Definition and Scope of Report	. 4
2.3	Ма	rket Drivers	. 5
2.3	.1	Meeting the Challenges of Urbanization	. 5
2.3	.2	Sustainability: Decoupling Growth and Emissions	. 6
2.3	.3	Economic Development	.7
2.3	.4	Improvements in Services and Citizen Well-Being	. 7
2.3	.5	Resilient Cities: Climate Adaption	.8
2.3	.6	Efficiency Improvements	. 8
2.3	5.7	Technology Innovation	. 9

2.4 N	/larket	Trends	9
2.4.1	Sma	art Cities and the Energy Transition	9
2.4.2	Wat	er: Tackling the Challenges of Drought and Flood	11
2.4.3	Nev	v Models for Urban Mobility	12
2.4.	3.1	Electric Mobility	12
2.4.	3.2	Multi-Modal and Mass Transportation	13
2.4.	3.3	On-Demand and Shared Mobility Services	13
2.4.	3.4	Smart Parking Systems	14
2.4.	3.5	Intelligent Transportation Systems	14
2.4.	3.6	Autonomous Vehicles	15
2.4.4	Inte	lligent Buildings and City Energy Management	15
2.4.5	Sma	art Government: Providing Safe, Healthy, and Efficient Cities	16
2.4.	5.1	Smart Street Lighting	16
2.4.	5.2	Smart Public Safety and Security	19
2.4.	5.3	Smart Waste	19
2.4.6	The	Evolution of City Platforms and Cross-Sector Solutions	20
2.5 N	/larket	Challenges	20
2.5.1	Fun	ding	20
2.5.2	Priv	acy, Security, and Big Data Challenges	21
2.5.3	Gov	rernance	22
2.5.4	Star	ndards	22
2.6 S	Smart C	City Business Models	23
2.6.1	PPF	Ps	24
2.6.2	ESF	PCs	24
2.6.3	ВОТ	Γ Agreements	24

2.6.4 Ligh	thouse Projects	25
Section 3		26
Regional Trends		26
3.1 Introduc	etion	26
3.2 North A	merica	26
3.2.1 Can	ada	26
3.2.1.1	Vancouver, Canada	27
3.2.2 Unit	ed States	27
3.2.2.1	Chicago	28
3.2.2.2	Denver, Colorado	29
3.3 Europe		30
3.3.1 Euro	opean Commission Programs	30
3.3.1.1	Smart Cities and Communities European Innovation Partnership	30
3.3.1.2	Lighthouse Cities	31
3.3.1.3	Other European Initiatives	31
3.3.2 Fran	nce	32
3.3.2.1	Lyon	32
3.3.2.2	Paris	32
3.3.3 Ger	many	33
3.3.3.1	Hamburg	33
3.3.4 Spa	in	34
3.3.4.1	Barcelona	34
3.3.5 Unit	ed Kingdom	35
3.3.5.1	Bristol	36
3.3.6 Oth	er European Smart City Initiatives	37

3.3.6	Amsterdam, the Netherlands	38
3.4 As	sia Pacific	39
3.4.1	China	39
3.4.2	India	41
3.4.2	2.1 New Delhi	42
3.4.3	Japan	43
3.4.4	Singapore	44
3.4.5	South Korea	45
3.4.6	Australia	46
3.5 La	ıtin America	47
3.5.1	Brazil	47
3.5.2	Mexico	48
3.5.3	Colombia	48
3.6 Mi	ddle East	49
3.6.1	UAE	49
3.6.2	Qatar	50
3.7 Af	rica	50
3.7.1	South Africa	50
3.7.2	Kenya	51
Section 4		52
Technology	/ Issues	52
4.1 Na	avigant Research Smart City Model	52
4.1.1	Smart City Technology Applications and Innovations	52
4.2 Sr	nart Cities and IoT	54
4.2.1	Sensors and Intelligent Devices	54

4.2.2	Smart City Communications Trends	54
4.2.2.	.1 Low-Power Networks	55
4.2.2	2 5G Networks	56
4.2.2.	.3 Big Data and Analytics in the Smart City	57
4.2.3	City Platforms and Operations Centers	58
4.3 Sm	nart City Standards	59
4.3.1	City Protocol	60
4.3.2	International Organization for Standardization	60
4.3.3	Other Standards Developments	61
4.3.4	Smart Cities and IoT Standards	61
Section 5		63
Key Industry	y Players	63
5.1 Sm	nart City Supplier Ecosystem	63
5.2 Se	lect Profiles of Global Smart City Providers	63
5.2.1	AT&T	64
5.2.2	Cisco	64
5.2.3	Engie	65
5.2.4	Ericsson	66
5.2.5	General Electric	67
5.2.6	Hitachi	68
5.2.7	Huawei	69
5.2.8	IBM	70
5.2.9	Itron	71
5.2.10	Microsoft	
5.2.11	Panasonic	

73
74
74
75
76
77
78
79
80
82
82
82
82
85
85
86
86
87
88
88
88
89
00
90
90

6.5	Conclusions and Recommendations	92
Section	n 7	94
Acrony	ym and Abbreviation List	94
Section	n 8	98
Table c	of Contents	98
Section	n 9	105
Table c	of Charts and Figures	105
Section	n 10	107
Scope	of Study	107
Source	es and Methodology	107
Notes .		108

Section 9

TABLE OF CHARTS AND FIGURES

Chart 1.1	Annual Smart City Revenue by Region, World Markets: 2016-2025	3
Chart 2.1	Urbanization Trends, World Markets: 1950-2050	5
Chart 6.1	Annual Smart City Revenue by Region, World Markets: 2016-2025	83
Chart 6.2	Cumulative Smart City Revenue by Region, World Markets: 2016-2025	83
Chart 6.3	Annual Smart City Revenue by Industry, World Markets: 2016-2025	85
Chart 6.4	Annual Smart City Revenue by Industry, North America: 2016-2025	88
Chart 6.5	Annual Smart City Revenue by Industry, Europe: 2016-2025	89
Chart 6.6	Annual Smart City Revenue by Industry, Asia Pacific: 2016-2025	90
Chart 6.7	Annual Smart City Revenue by Industry, Latin America: 2016-2025	91
Chart 6.8	Annual Smart City Revenue by Industry, Middle East & Africa: 2016-2025	92
Figure 2.1	Transportation Landscape: 2025-2050	12
Figure 2.2	Potential Smart City Applications with Networked LED Street Lights	17
Figure 2.3	Top Priority Smart City Technologies for U.S. Mayors	18
Figure 3.1	UK Smart Cities Index	36
Figure 3.2	First 20 Smart Cities Selected from India's Smart City Challenge	42
Figure 4.1	Navigant Research Smart City Model	52
Figure 5.1	Smart City Suppliers Ecosystem	63

Table 2.1	Climate Action Plans of Selected Cities, World Markets	6
Table 2.2	Example Smart Street Light Projects, World Markets	18
Table 2.3	Smart City Business Model Strengths and Weaknesses	23
Table 4.1	Smart City Applications, Technologies, and Example Cities	53

Section 10 SCOPE OF STUDY

Navigant Research has prepared this report to present an analysis of the growth and evolution of the global smart city market. The report provides an examination of recent trends and business models currently being utilized in the market, with a focus on the relevant investment cities are making in the energy, water, mobility, buildings, and government sectors. It includes a study of regional trends, national programs, and individual city projects. Regional forecasts of the global smart city market for 2016-2025 are also included.

The report's purpose is not to provide an exhaustive technical assessment of smart city technologies. Rather, it aims to offer a strategic examination of the market with a focus on key economic, business, and social drivers, technology issues, regulatory factors, and the competitive landscape.

SOURCES AND METHODOLOGY

Navigant Research's industry analysts utilize a variety of research sources in preparing Research Reports. The key component of Navigant Research's analysis is primary research gained from phone and in-person interviews with industry leaders including executives, engineers, and marketing professionals. Analysts are diligent in ensuring that they speak with representatives from every part of the value chain, including but not limited to technology companies, utilities and other service providers, industry associations, government agencies, and the investment community.

Additional analysis includes secondary research conducted by Navigant Research's analysts and its staff of research assistants. Where applicable, all secondary research sources are appropriately cited within this report.

These primary and secondary research sources, combined with the analyst's industry expertise, are synthesized into the qualitative and quantitative analysis presented in Navigant Research's reports. Great care is taken in making sure that all analysis is well-supported by facts, but where the facts are unknown and assumptions must be made, analysts document their assumptions and are prepared to explain their methodology, both within the body of a report and in direct conversations with clients.

Navigant Research is a market research group whose goal is to present an objective, unbiased view of market opportunities within its coverage areas. Navigant Research is not beholden to any special interests and is thus able to offer clear, actionable advice to help clients succeed in the industry, unfettered by technology hype, political agendas, or emotional factors that are inherent in cleantech markets.

NOTES

CAGR refers to compound average annual growth rate, using the formula:

CAGR = (End Year Value ÷ Start Year Value)^(1/steps) – 1.

CAGRs presented in the tables are for the entire timeframe in the title. Where data for fewer years are given, the CAGR is for the range presented. Where relevant, CAGRs for shorter timeframes may be given as well.

Figures are based on the best estimates available at the time of calculation. Annual revenues, shipments, and sales are based on end-of-year figures unless otherwise noted. All values are expressed in year 2016 U.S. dollars unless otherwise noted. Percentages may not add up to 100 due to rounding.

Published 2Q 2016

©2016 Navigant Consulting, Inc. 1375 Walnut Street, Suite 100 Boulder, CO 80302 USA Tel: +1.303.997.7609

http://www.navigantresearch.com

Navigant Consulting, Inc. (Navigant) has provided the information in this publication for informational purposes only. The information has been obtained from sources believed to be reliable; however, Navigant does not make any express or implied warranty or representation concerning such information. Any market forecasts or predictions contained in the publication reflect Navigant's current expectations based on market data and trend analysis. Market predictions and expectations are inherently uncertain and actual results may differ materially from those contained in the publication. Navigant and its subsidiaries and affiliates hereby disclaim liability for any loss or damage caused by errors or omissions in this publication.

Any reference to a specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise, does not constitute or imply an endorsement, recommendation, or favoring by Navigant.

This publication is intended for the sole and exclusive use of the original purchaser. No part of this publication may be reproduced, stored in a retrieval system, distributed or transmitted in any form or by any means, electronic or otherwise, including use in any public or private offering, without the prior written permission of Navigant Consulting, Inc., Chicago, Illinois, USA.

Government data and other data obtained from public sources found in this report are not protected by copyright or intellectual property claims.

Note: Editing of this report was closed on June 17, 2016.